企业信息

    余姚市优职模具厂

  • 7
  • 公司认证: 营业执照已认证
  • 企业性质:外资企业
    成立时间:
  • 公司地址: 浙江省 宁波 余姚市 凤山街道 中山北路1395号
  • 姓名: 周老师
  • 认证: 手机未认证 身份证未认证 微信已绑定

    零基础模具培训地址 余姚UG编程培训

  • 所属行业:教育 设计培训 模具设计培训
  • 发布日期:2020-12-12
  • 阅读量:217
  • 价格:5500.00 元/个 起
  • 产品规格:不限
  • 产品数量:9999.00 个
  • 包装说明:不限
  • 发货地址:浙江宁波余姚市  
  • 关键词:零基础模具培训地址

    零基础模具培训地址 余姚UG编程培训详细内容

    模具分为哪几大系统?
    浇注→**出→冷却→成型→排气
    在做模具设计进程中应注意哪些问题?
    1、壁厚应尽量均匀共同,脱模斜度要满足大。
    2、过渡部分应逐渐,圆滑过渡。
    3、浇口。流道尽可能宽大,粗短,且应根据缩短冷凝进程设置浇口位置,必要时应加冷料井。
    4、模具外表应光亮,粗糙度低(低0.8)
    5、排气孔,槽有必要满足,以及时排出空气和熔体中的气体
    6、除PET外,壁厚不要太薄,一般不得小于1mm.
    塑胶件常出现的瘕疵 ?
    缺胶→披风→气泡→缩水→熔接痕→黑点→条纹→翘起→分层→脱皮
    模架有那些结构?
    面板→A板→B板→方铁→导柱→顶针板→顶针固定板→底板
    分型面的基本形式有哪些?
    平直→歪斜→曲面→笔直→弧面
    在UG中怎么相互躲藏?
    ctrL+B或ctrL+shift+B
    模具加工机械设备有哪些?
    电脑锣→车床→铣床→磨床→钻床
    什么是2D,什么是3D?
    D的英文是:Dimension(线度、维)的字头,2D是指二维平面,3D是指三维空间,在模具部分,2D通常是指平面图即CAD图,3D通常指立体图。
    pro/e的默许精度是多少?UG默许精度是多少?
    pro/e默许精度为:0.0012MM,UG默许精度为:0.0254MM。
    **模架出产四强企业?
    德国:HASCO 日本:FUTABA(双叶)美国:DME 我国:LKM(龙记)
    CAD的默许字高是多少?
    CAD默许字高为是:2.5MM。
    什么是碰穿,什么是插穿?
    与PL面平行的公母模贴合面叫碰穿面,与PL面不平行的公母模贴合面叫插面。
    枕位是什么?
    外壳类塑件的边际常开有缺口,用于安装各类配件,此处构成的枕壮分型部分称为枕位。
    塑胶件常出现的瘕疵 ?
    缺胶→披风→气泡→缩水→熔接痕→黑点→条纹→翘起→分层→脱皮常用的塑胶模具钢材?
    45# S50c 718 738 718H
    738H P20 2316 8407 H13
    NAK80 NAK55 S136 S136H SKD61
    高镜面抛光用哪种纲材?
    常用高硬热处理钢材,例如:SKD61、8407、S136
    注塑模具设计经验与思路分析:
    步:产品分析与修改,确定模具结构,缩水图:
    1、产品分析:
    开模方向,分模线与分模面,外形尺寸,厚度,拔模角度,倒勾及相应抽芯方式,进胶点与进胶方式,模穴数等等。
    2、转工程图:
    用三维软件出图,一般建立三个视图:个主视图(后模表面投影),*二个*三个立体示意图(外表面和内表面)。其他视图按*三角法或角法摆放,剖视图(X和Y,剖切位置线通过重要位置中心,倒勾,柱位,孔位,枕位等等),保存文件DXF格式,到CAD打开标数处理。
    3、缩水图:
    将上一步工程图镜像一次并且放大一个缩水率的倍数。(标明:MI,缩水率)
    第二步:产品排位:在模具内怎样排列
    考虑因素:模具长宽方位,产品模穴数,进胶位置,间隔(强度,放什么零件放得下)
    零基础模具培训地址
    高性能加工中心与高速加工中心的区别在于它除有一个能高速旋转的主轴,还设计了高精度的直线运动导轨、大功率主轴电机、精密主轴轴承、滚珠丝杠、高效伺服驱动电机以及先进的CNC系统等。因而使加工中心在高效率下加工出高精度的零件,大大提高市场竞争力。 
        1.直线运动导轨 
        加工中心的各轴向运动的速度和精度,对实现高速切削至关重要。工学博士JoeKraemer在为高性能加工中心下定义时指出,在机床主轴转速与刀具系统不变和保证满足加工零件精度的前提下,如果各轴向运动不能达到f=7.62-11.43m/min的进给速度,那就不能称之为高性能加工中心。但是要达到如此高的进给速度,采用普通机床的方形导轨是远远不能实现的。必须选用直线运动导轨。试验证明,直线运动导轨的磨擦系数仅为普通方形导轨的1/20。由于直线运动导轨的滚柱与导轨间的接触面积远远小于方形导轨,因而使功率消耗也降低为方形导轨的1/20,且能保持长时间的很少磨损,大大提高导轨的使用寿命。精密的直线运动导轨具有一个淬火硬度为HRC58-62的经精密导轨磨床磨削的直线形导轨,而不像普通方形导轨那样少有一个V型导轨。因为两条直线形导轨的结构简单,因此*加工、装配、测量以及能选择合适的滚柱直径等。 
        在机床开始沿直线运动时,直线运动导轨只需166kg力的力矩克服静摩擦,需69.2kg力的力矩克服动摩擦。而方形导轨则需346kg力的力矩克服静摩擦,103.8kg力克服动摩擦。因而,采用直线运动导轨可使机床的进给速度达63.5m/min,其中38.1m/min的进给速度用得多。使加速度能在0.6-1.0g范围内。力口之直线运动导轨具有高的刚度,与工作台之间无间隙存在,因而很少产生振动,能加工出低表面粗糙度的零件表面,延长刀具的使用寿命。 
        2.精密的滚珠丝杠 
        机床滚珠丝杠直径及螺距的大小直接影响加工零件的精度,尤其是在进给量的切削条件下,采用直线运动导轨的高性能加工中心都选择小直径的细牙螺距的单头滚珠丝杠。也有的采用粗牙螺距的多头滚珠丝杠。一般采用伺服电机驱动滚珠丝杠的传动方案。但是,滚珠丝杠在工作中,滚动体作螺旋运动其自转轴线的方向是变化的,因而会产生陀螺运动。当陀螺运动中的陀螺力矩Mf**过滚珠体与滚道间的摩擦力时,滚动体将产生滑动,从而造成剧烈摩擦,使丝杠温度升高,同时振动和噪音增大,缩短了丝杠寿命,降低了滚珠丝杠的传动品质。为此开发出一种新型的高性能的滚动丝杠——行星滚柱丝杠,较好地解决了以上技术难题。 
        随着新技术的不断发展,在**高进给的情况下,工作台加速度将达到3g以上,因此移动件的惯性力也相当大。在进行机械部分设计时必须力求减小移动件的质量和回转件的转动惯量,进一步提高进给系统的刚度、灵敏度和精度。目前在加工中心上已采用由德国Ex-cell-o公司发明的大功率直线伺服电机,直接驱动工作台作直线运动,并与由碳素纤维增强塑料制成的轻型结构工作台和直线滚动导轨副匹配,实现高进给速度和高精度加工。 
        3.大功率机床主轴电机 
        在诸多影响选择机床主轴电机功率大小的因素中,主要的有主轴锥度、加工中选择的切削用量(切除率)、零件大小和刀具尺寸等。选择大锥度主轴,能进行大功率切削,但是,有时为了快速地加速和减速,也可以采用大功率电机驱动小锥度主轴的方案。 
        对于大切除率加工,必须选用大锥度主轴和大功率机床主轴电机。零件材料对选择机床主轴电机功率影响不大。例如,对于锻件和铸件,并不要求大功率切削。但是选择在机床主轴高转速下加工,必须选择大功率电机。大零件加工也要选择大功率驱动是因为它需选用大直径刀具加工。 
        4.主轴轴承 
        切削实验证明,在主轴前端安装一排向心止推轴承和一排滚珠轴承,在主轴后端安装两排滚珠轴承,为的装配组合方案。它能保证在通常切削条件下主轴有好的刚性,能承受很大的侧向切削力,又能满足高速切削加工的需要。  
        主轴轴承的种类和规模大小必须能满足使用条件。尺寸大的轴承能提供高强度和高刚度。但是大尺寸轴承有两个缺点: 
        由于大轴承的质量大和轴承间的接触面积大,因而在高主轴转速下产生大量的热量。在大量的热量长时间地作用下会引起主轴尺寸—涨大,影响加工精度。 
        大质量的主轴还需要大功率电机才能驱动。尽管轴承内圈加有润滑油冷却,但是大轴承在高转速下使承载量和旋转惯量增大,因而所需功率加大。尤其是当主轴转速增加时,功率消耗增大。可是并不是所有的功率都消耗在切削加工上。例如,具有40马力的主轴,只能有15—20马力的功率作用于刀头上,其余则都用以旋转主轴。对于一个高功率主轴,它能尽可能地将大量的功率作用在切削工件上,能用很小的功率去驱动转速的主轴。作用在主轴上的功率大小,根据空载下旋转主轴的转速即可计算出机床所消耗的功率。因为在高速下切削,夹头和刀具在切削力作用下产生径向偏斜,不同心等引起附加力增大或产生不平衡的离心力等。 
        切削实践证明,用多排小直径轴承代替两排大直径轴承,将取得好的加工效果。因为小直径轴承重量轻,消耗功率小,发热量也小。使用多排小直径轴承,并不使主轴刚度受到影响,而且还对主轴轴承的载荷预加相当有利。轴承预加载荷通常指主轴在静态下作用在轴承上的压力大小,一般采用预加载荷来改善主轴刚度和加大切削能力。但是由于作用在轴承上的压力增大,发热量增大,因而也加速了轴承磨损。 
        为了提高刀具的切削性能和延长刀具的使用寿命,对多排轴承预加较小的压力,即能提高机床主轴的刚度,达到以,上目的。 
        从长远的观点上看,对磁力、气动和静**承的市场需求量将会大大增加。但是,目前在高速切削中,常用的还是以下两种:向心止推轴承和滚珠轴承。在标准的机床主轴转速条件下,在主轴前端经常安装一排滚珠轴承和—排向心止推轴承,在主轴后端安装两排滚珠轴承。因为在主轴前端安装—排滚珠轴承能较好地提高主轴刚度增加主轴的承载能力。这一点对于重载切削至关重要。但是,因为滚珠轴承有较大的接触面积,比向心止推轴承的重量重,因此消耗功率大,产生热量大,*引起主轴尺寸涨大,功率利用低。高速切削可减少作用在主轴和刀具上的径向力,这样,在主轴前端安装的向心止推轴承提供了足够的刚度和稳定性,避免了机床主轴受热而产生的尺寸膨胀。 
        合理地选择轴承材料同轴承种类同样重要。虽然由轴承钢制成的轴承目前仍被广泛使用,但实践证明,高速切削使用陶瓷轴承将表现出许多的优点。尽管轴承钢制成的轴承价格*,便其重量远比同样规格的陶瓷轴承重得多。由于重量重,高速切削中发热量大,必须配置复杂的冷却润滑系统。同时随着主轴转速的提高,使作用在轴承上的向心力增大,使轴承温度升高,引起主轴尺寸增大,影响加工零件的尺寸精度,同时使机床主轴所需功率增加。陶瓷轴承由于重量轻,将较好地解决这一技术难题。切削试验证明,陶瓷轴承使主轴尺寸增大的速度只为轴承钢轴承的1/40。原因是它在高速下切削只有很小的向心力作用在轴承上。 
        同时,为了提高机床主轴刚度和切削能力,在陶瓷轴承上还可施加很大的预加载荷。由于陶瓷轴承有以上特点,因而使其使用寿命增长。 
        现代机床主轴技术允许机床根据主轴转速,方便地调整作用在主轴轴承上的预加载荷。当机床主轴转速增加时,由于向心力增加,作用在轴承广的载荷也增加。反之,作用在轴承上的载荷减小。因而,使轴承上的热量减少,轴承尺寸膨胀减小。当然在高速切削下,也允许给轴承预加很小的载荷,这样作用在刀具上的切削力很小,因此可降低对机床刚度的要求。在低主轴转速下,给轴承预加较大的载荷,仍是必要的,因为在增加刀具切削力同时,作用在主轴上的作用力也增大了。 
        5. 主轴电机与传动系统  
        目前,机床主轴和电机之间有两种联接方式,一是通过皮带或齿轮;二是直接传动,即直接将主轴电机连接于主轴上,或是将主轴电机与主轴同时安装在一个复合装置上,称为复合主轴。 
        由皮带或齿轮传动的优点是,主轴电机在慢速下旋转也能获得高的主轴转速。这种传动方式,由于电机转速低,输入功率小,因而价格*,但它具有以下缺点:由于结构复杂,因而*出现毛病,维修不方便。同时皮带、齿轮与主轴之间还会产生振动。切削试验证明,因存在振动,严重影响了加工质量,降低了刀具使用寿命。切削试验是在两个卧式加工中心上进行,一个选择转速7000r/min的两级齿轮传动主轴;另一个转速为10000r/min的直接传动的复合主轴。在切削参数一致的情况下,直接传动的复合主轴加工中心产生出的Ramax=2.7µm,而齿轮传动主轴加工中心为Ramax=4.3µm。同时前者由于结构简单,运动零件少,因而可靠性高。随着结构的进一步简化,运动零件进一步减少,还会使主轴能更快地加速和减速。相反,皮带或齿轮传动主轴包括主轴、轴座、电动机、皮带轮或齿轮等,每个零件由不同重量的材料构成,高速旋转下发生摩擦产生热。由于材料重量及作用力不同,各处产生的热量又不相同,因此引起主轴各处膨胀量大小不同,严重时,使主轴产生变形,影响主轴尺寸、几何形状等。而直接传动主轴则由于热变形均匀,同时直接传动主轴即使在**高速条件下,也可采取冷却液通过主轴内孔的冷却方式进行冷却。因而基本上不影响主轴精度,更能稳定地保证加工质量。 
        6.冷却与润滑 
        在切削加工中,如果不加注冷却液,将会引起主轴的尺寸膨胀。为保证机床主轴的高精度,就必须稳定地控制主轴和轴承有一个固定的尺寸。 
        目前,普通机床根据主轴结构不同,选择外冷、内冷方式或内外共同冷却方式对主轴、轴承进行冷却。但—般情况下,尽量采用外冷方式。通过冷却,将由刀头传递到主轴的热量排至空气中去。 
        研究发现,同样大小的陶瓷轴承与轴承钢轴承相比,不需要大量加注冷却润滑液。一个大直径的滚珠轴承,由于直径大,接触面积大,产生大量的摩擦热,建议选择内外共同冷却方式进行冷却。 
        为了有效地提高机床利用率,降低功率消耗,建:议采用雾状冷却或喷射冷却油主轴冷却系统进行冷,却。尤其是对于高速加工机床,建议根据机床主轴达:到的转速和轴承选用的材料,选择主轴冷却系统。根据机床主轴的转速及轴承外径校验,以确定选择的冷却系统。若两种轴承均选择轴承钢轴承,建议选择喷射油冷却系统。当然两者相比,后者需要提供大量的冷却润滑液,增大了机床的功率消耗。 
        7.机床与刀具接口 
        CAT型法兰式刀具夹头是多年来常用的机床主轴与刀具接口。但目前使用多的则为新型的中空短锥柄结构的HSK夹头。虽然HSK夹头价格昂贵,使用还受到一定的限制,仅它能在高的机床主轴转速下具有较高的稳定性和高配合精度,已受到各国用户的青睐。这是由于HSK夹头的结构先进,加工质量高,夹头采用了短锥面和端面与主轴定位、配合的结构形式,因而它与CATv型法兰式夹头比较,重量轻,夹紧可靠性高,定位精度高,重复精度高,且更换快速方便。 
        使用中可根据机床主轴转速、主轴锥度以及加工方法等选择不同锥度、平衡精度的HSK夹头。例如,在机床主轴转速10000r/min,主轴为ISO.40号锥度,应选择ISO.40号锥度的经预平衡的HSK夹头。而在25000r/min,主轴锥度为40号的机床上使用,应选择40号锥度的可进行现场平衡的HSK夹头。因为这种夹头的平衡精度高,加工零件尺寸精度高,表面粗糙度低。同时由于延长了刀具的使用寿命,因而降低—厂生产成本。尤其对于平衡精度高的夹头在20000—40000r/min的高速机床上使用,还有延长轴承使用寿命的优点。 
        一般情况下,单面的刀具/夹头平衡器即可能满足高速加工要求。而对于加长刀具,则应选择双面刀具/夹头平衡器对其进行平衡。
    零基础模具培训地址
    从小处着手也能有效缩短模具生产周期。除刀具外,夹具、电加工介质、原材料检验等,这些看似小事,也往往易被忽视,然而它们却对模具生产周期和质量有着很大的影响。一般发现,不合适的刀具、夹具及电加工介质,严重影响模具的加工速度和质量,一旦使用了高质量和合适的刀具、夹具及电加工介质,情况就立时改变,在原材料投入加工之前对其进行必要的检验,可避免因废料(或次料)错投所产生的返工。
    零基础模具培训地址
    1. 选择模具钢时什么是重要的和有决定性意义的因素?
    答:成形方法 - 可从两种基本材料类型中选择。
      A) 热加工工具钢,它能承受模铸、锻造和挤压时的相对高的温度。
      B) 冷加工工具钢,它用于下料和剪切、冷成形、冷挤压、冷锻和粉末加压成形。
      塑料-一些塑料会产生腐蚀性副产品,例如PVC塑料。长时间的停工引起的冷凝、腐蚀性气体、酸、冷却/加热、水或储存条件等因素也会产生腐蚀。 在这些情况下,推荐使用不锈钢材料的模具钢。
      模具尺寸 - 大尺寸模具常常使用预硬钢。 整体淬硬钢常常用于小尺寸模具。
      模具使用次数 - 长期使用(> 1 000 000次)的模具应使用高硬度钢,其硬度为48-65 HRC。 中等长时间使用(100 000到1 000 000次)的模具应使用预硬钢,其硬度为30-45 HRC。 短时间使用(<100 000次)的模具应使用软钢,其硬度为160-250 HB。
      表面粗糙度 - 许多塑料模具制造商对好的表面粗糙度感兴趣。 当添加硫改善金属切削性能时,表面质量会因此下降。 硫含量高的钢也变得更脆。
      2. 影响材料可切削性的首要因素是什么?
    答:钢的化学成分很重要。 钢的合金成分越高,就越难加工。 当碳含量增加时,金属切削性能就下降。
      钢的结构对金属切削性能也非常重要。 不同的结构包括: 锻造的、铸造的、挤压的、轧制的和已切削加工过的。 锻件和铸件有非常难于加工的表面。
      硬度是影响金属切削性能的一个重要因素。模具微信:1828765339  一般规律是钢越硬,就越难加工。 高速钢(HSS)可用于加工硬度为330-400 HB的材料;高速钢+钛化氮(TiN)涂层,可加工硬度为45 HRC的材料; 而对于硬度为65-70 HRC的材料,则必须使用硬质合金、陶瓷、金属陶瓷和立方氮化硼(CBN)。
      非金属参杂一般对刀具寿命有不良影响。 例如Al2O3 (氧化铝),它是纯陶瓷,有很强的磨蚀性。
      后一个是残余应力,它能引起金属切削性能问题。 常常推荐在粗加工后进行应力释放工序。
    3. 模具制造的生产成本由哪些部分组成?
    答:粗略地说,成本的分布情况如下:
      切削 65%
      工件材料 20%
      热处理 5%
      装配/调整 10%
      这也非常清楚地表明了良好的金属切削性能和优良的总体切削解决方案对模具的经济生产的重要性。
      4. 铸铁的切削特性是什么?
    答:一般来说,它是:
      铸铁的硬度和强度越高,金属切削性能越低,从刀片和刀具可预期的寿命越低。 用于金属切削生产的铸铁其大部分类型的金属切削性能一般都很好。 金属切削性能与结构有关,较硬的珠光体铸铁其加工难度也较大。 片状石墨铸铁和可锻铸铁有优良的切削属性,而球墨铸铁相当差。
      加工铸铁时遇到的主要磨损类型为: 磨蚀、粘结和扩散磨损。 磨蚀主要由碳化物、沙粒参杂物和硬的铸造表皮产生。 有积屑的粘结磨损在低的切削温度和切削速度条件下发生。 铸铁的铁素体部分*焊接到刀片上,但这可用提高切削速度和温度来克服。
      在另一方面,扩散磨损与温度有关,在高切削速度时产生,特别是使用高强度铸铁牌号时。 这些牌号有很高的抗变型能力,导致了高温。 这种磨损与铸铁和刀具之间的作用有关,这就使得一些铸铁需用陶瓷或立方氮化硼(CBN)刀具在高速下加工,以获得良好的刀具寿命和表面质量。
      一般对加工铸铁所要求的典型刀具属性为: 高热硬度和化学稳定性,但也与工序、工件和切削条件有关;要求切削刃有韧性、耐热疲劳磨损和刃口强度。 切削铸铁的满意程度取决于切削刃的磨损如何发展: 快速变钝意味着产生热裂纹和缺口而使切削刃过早断裂、工件破损、表面质量差、过大的波纹度等。 正常的后刀面磨损、保持平衡和锋利的切削刃正是一般需要努力做到的。
      5. 什么是模具制造中主要的、共同的加工工序?
    答:模具制造都要经过切削过程,其中至少应分为3个工序类型:
      粗加工、半精加工和精加工,有时甚至还有**精加工(大部分是高速切削应用)。 残余量铣削当然是在半精加工工序后为精加工而准备的。 在每一个工序中都应努力做到为下一个工序留下均匀分布的余量,这一点非常重要。 如果刀具路径的方向和工作负载很少有快速的变化,刀具的寿命就可能延长,并更加可预测。 如果可能,就应在机床上进行精加工工序。 这会在更短的调试和装配时间内提高模具的几何精度和质量。
      6. 在这些不同的工序中应主要使用何种刀具?
    答:粗加工工序: 圆刀片铣刀、球头立铣刀及大刀尖圆弧半径的立铣刀。
      半精加工工序: 圆刀片铣刀(直径范围为10-25 mm的圆刀片铣刀),球头立
    铣刀。
      精加工工序: 圆刀片铣刀、球头立铣刀。
      残余量铣削工序:圆刀片铣刀、球头立铣刀、直立铣刀。
      通过选择专门的刀具尺寸、槽形和牌号组合,以及切削参数和合适的铣削策略,来优化切削工艺,这非常重要。
      关于可使用的高生产率刀具,见模具制造用样本C-1102:1
      7. 在切削工艺中有没有一个重要的因素?
    答:切削过程中一个重要的目标是在每一个工序中为每一种刀具创建均匀分布的加工余量。 这就是说,必须使用不同直径的刀具(从大到小),特别是在粗加工和半精加工工序中。 任何时候主要的标准应是在每个工序中与模具的终形状尽可能地相近。
      为每一种刀具提供均匀分布的加工余量保证了恒定而高的生产率和安全的切削过程。 当ap/ae(轴向切削深度/径向切削深度)不变时,切削速度和进给率也可恒定地保持在较高水平上。 这样,切削刃上的机械作用和工作负载变化就小,因此产生的热量和疲劳也少,从而提高了刀具寿命。 如果后面的工序是一些半精加工工序,特别是所有精加工工序,就可进行无人加工或部分无人加工。 恒定的材料加工余量也是高速切削应用的基本标准。
      恒定的加工余量的另一个有利的效应是对机床——导轨、球丝杠和主轴轴承的不利影响小。
    8. 为什么经常将圆刀片铣刀作为模具粗加工刀具的?
    答:如果使用方肩铣刀进行型腔的粗铣削,在半精加工中就要去除大量的台阶状切削余量。 这将使切削力发生变化,使刀具弯曲。 其结果是给精加工留下不均匀的加工余量,从而影响模具的几何精度。 如果使用刀尖强度较弱的方肩铣刀(带三角形刀片),就会产生不可预测的切削效应。 三角形或菱形刀片还会产生更大的径向切削力,并且由于刀片切削刃的数量较少,所以他们是经济性较差的粗加工刀具。
      另一方面,圆刀片可在各种材料中和各个方向上进行铣削,如果使用它,在相邻刀路之间过渡较平滑,也可以为半精加工留下较小的和较均匀的加工余量。 圆刀片的特性之一是他们产生的切屑厚度是可变的。 这就使它们可使用比大多数其它刀片更高的进给率。 圆刀片的主偏角从几乎为零(非常浅的切削)改变到90度,切削作用非常平稳。 在切削的深度处,主偏角为45度,当沿带外圆的直壁仿形切削时,主偏角为90度。 这也说明了为什么圆刀片刀具的强度大——切削负载是逐渐增大的。 粗加工和半粗加工应该总将圆刀片铣刀,如CoroMill 200(见模具制造样本C-1102:1)作为。 在5轴切削中,圆刀片非常适合,特别是它没有任何限制。
      通过使用良好的编程,圆刀片铣刀在很大程度上可代替球头立铣刀。 跳动量小的圆刀片与精磨的的、正前角和轻切削槽形相结合,也可以用于半精加工和一些精加工工序。
    9. 什么是有效切削速度(ve)和为什么它对高生产率非常重要?
    答:切削中,实际或有效直径上的有效切削速度的基本计算总是非常重要。 由于台面进给量取决于一定切削速度下的转速,如果未计算有效速度,台面进给量就会计算错误。
      如果在计算切削速度时使用刀具的名义直径值(Dc),当切削深度浅时,有效或实际切削速度要比计算速度低得多。如圆刀片CoroMill 200刀具(特别是在小直径范围)、球头立铣刀、大刀尖圆弧半径立铣刀和CoroMill 390立铣刀之类的刀具(这些刀具请参见山特维克可乐满的模具制造样本 C-1102:1)。由此,计算得到的进给率也低得多,这严重降低了生产率。 更重要的是,刀具的切削条件低于它的能力和推荐应用范围。
      当进行3D切削时,切削时的直径在变化,它与模具的几何形状有关。 此问题的一个解决方案是定义模具的陡壁区域和几何形状浅的零件区域。 如果对每个区域编制专门的CAM程序和切削参数,就可以达到良好的折中和结果。
    10. 对于成功的淬硬模具钢铣削来说,重要的应用参数有哪些?
    答:使用高速铣对淬硬模具钢进行精加工时,一个需遵守的主要因素是采用浅切削。 切削深度应不**过0.2/0.2 mm(ap/ae:轴向切削深度/径向切削深度)。这是为了避免刀柄/切削刀具的过大弯曲和保持所加工模具拥有小的公差和高精度。
      选择刚性很好的夹紧系统和刀具也非常重要。 当使用整体硬质合金刀具时,采用有核心直径(抗弯刚性)的刀具非常重要。 一条经验法则是,如果将刀具的直径提高20%,例如从10 mm提高到12 mm,刀具的弯曲将减小50%。 也可以说,如果将刀具悬伸/伸出部分缩短20%,刀具的弯曲将减小50%。 大直径和锥度的刀柄进一步提高了刚度。 当使用可转位刀片的球头立铣刀(见模具制造样本 C-1102:1)时,如果刀柄用整体硬质合金制造,抗弯刚性可以提高3-4倍。
      当用高速铣对淬硬模具钢进行精加工时,选择槽形和牌号也非常重要。 选择像TiAlN这样有高热硬度的涂层也非常重要。
    11. 什么时候应采用顺铣,什么时候应采用逆铣?
     答:主要建议是: 尽可能多使用顺铣。
      当切削刃刚进行切削时,在顺铣中,切屑厚度可达到其值。 而在逆铣中,为小值。 一般来说,在逆铣中刀具寿命比在顺铣中短,这是因为在逆铣中产生的热量比在顺铣中明显地高。 在逆铣中当切屑厚度从零增加到时,由于切削刃受到的摩擦比在顺铣中强,因此会产生更多的热量。 逆铣中径向力也明显高,这对主轴轴承有不利影响。
      在顺铣中,切削刃主要受到的是压缩应力,这与逆铣中产生的拉力相比,对硬质合金刀片或整体硬质合金刀具的影响有利得多。 当然也有例外。 当使用整体硬质合金立铣刀(见模具样本C- 1102:1中的刀具)进行侧铣(精加工)时,特别是在淬硬材料中,逆铣是。 这更*获得更小公差的壁直线度和更好的90度角。 不同轴向走刀之间如果有不重合的话,接刀痕也非常小。 这主要是因为切削力的方向。 如果在切削中使用非常锋利的切削刃,切削力便趋向将刀“拉”向材料。 可以使用逆铣的另一个例子是,使用老式手动铣床进行铣削,老式铣床的丝杠有较大的间隙。 逆铣产生消除间隙的切削力,使铣削动作更平稳。
    http://wxrzhi123.b2b168.com
    欢迎来到余姚市优职模具厂网站, 具体地址是浙江省宁波余姚市中山北路1395号,联系人是周老师。 主要经营余姚优职教育专注于余姚数控培训、加工中心培训、模具设计培训、余姚模具培训 、加工中心编程培训等;一直秉乘”学业即创业,毕业即就业”的办学理念,以良好的口碑和诚信的服务,报效社会反馈学员。。 单位注册资金单位注册资金人民币 100 万元以下。 我们有优秀的管理和教学团队,办学目标明确,观念**前,优质的服务和产品,不断地受到新老用户及业内人士的肯定和信任。如果您对我公司的服务有兴趣,请在线留言或者来电咨询。